
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2008) 2455–2462

www.elsevier.com/locate/jcp
Efficient kinetic Monte Carlo simulation

Tim P. Schulze *

Mathematics Department, University of Tennessee, 121 Ayres Hall 1403, Circle Drive Knoxville, TN 37996-1300, USA

Received 22 February 2007; received in revised form 24 October 2007; accepted 28 October 2007
Available online 7 November 2007
Abstract

This paper concerns kinetic Monte Carlo (KMC) algorithms that have a single-event execution time independent of the
system size. Two methods are presented—one that combines the use of inverted-list data structures with rejection Monte
Carlo and a second that combines inverted lists with the Marsaglia–Norman–Cannon algorithm. The resulting algorithms
apply to models with rates that are determined by the local environment but are otherwise arbitrary, time-dependent and
spatially heterogeneous. While especially useful for crystal growth simulation, the algorithms are presented from the point
of view that KMC is the numerical task of simulating a single realization of a Markov process, allowing application to a
broad range of areas where heterogeneous random walks are the dominate simulation cost.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Kinetic Monte Carlo; Stochastic simulation; Markov process
1. Introduction

The term ‘‘kinetic Monte Carlo’’ (KMC) often refers to the stochastic simulation of crystal growth and evo-
lution [1–3], where atoms are deposited on or hop between predefined lattice locations with rates that depend
on the local crystal configuration. As explained further below, this is closely related to other types of dynamic
Monte Carlo simulations, where the distribution/ensemble one is sampling evolves in time. A distinct feature
of KMC, however, is that the distribution of rates is derived from, or coupled to, the evolution of an under-
lying state-space that is spatially heterogeneous. This lends KMC simulations a character that resembles the
solution of space–time partial differential equations. While the algorithms presented below were developed
with application to crystal growth in mind, they are presented from the point of view that KMC is the numer-
ical task of simulating a single realization of a Markov process. These same algorithms should therefore be
applicable to a broad range of systems that are modeled as heterogeneous random walks.

The specific algorithms under consideration have single event execution times that are independent of the
size of the system. As explained further below, this is only possible when the required changes to the system
state are in some sense local. These algorithms generalize a known algorithm that uses an inverted-list data
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2007.10.021

* Tel.: +1 212 998 3265; fax: +1 212 995 4121.
E-mail address: schulze@math.utk.edu

mailto:schulze@math.utk.edu


2456 T.P. Schulze / Journal of Computational Physics 227 (2008) 2455–2462
structure to achieve a fixed cost for local updates in the special case where the model involves a small set of
distinct rates [4,5]. To achieve algorithms that work for arbitrarily large sets of rates, an inverted-list data
structure is combined with one of two standard Monte Carlo techniques: rejection or the (rejection-free)
Marsaglia–Norman–Cannon [6,7] algorithm for sampling a fixed distribution/ensemble. The first of these
has been applied to the simulation of epitaxial growth [8], but only briefly discussed; the second is entirely
new. We begin by introducing KMC from a general point of view and reviewing the most commonly used
algorithms.

2. KMC algorithms

Kinetic Monte Carlo models usually fall into the category of discrete-space, continuous-time Markov pro-
cesses, where the system passes through a sequence of states fxtk 2 Xg drawn from a model dependent state-
space X at transition times ft0 < t1 < � � � < tk < � � �g. Equivalently one can view the sequence fxkg as a Mar-
kov chain and associate with this an inhomogeneous Poisson process with rate QðtÞ that generates a sequence
of waiting times fdtkg for the intervals between transitions. The goal of KMC simulations is to produce a sam-
ple of these two sequences from the set of all possible realizations as quickly as possible. Generating the first of
the two sequences is the principal topic of this paper; the second is relatively straight-forward, although omit-
ting or approximating it can sometimes lead to considerable computational savings.

Common examples for the state-space include the set of occupation arrays L ¼ fL ¼ fLijk 2 f0; 1ggg
describing a simple cubic crystal or the set of height arrays H ¼ fH ¼ fH ij 2 Zgg describing the surface of
the crystal. We will represent the general case as X ¼ fX ig using a single index to enumerate the states.
The sequence fxk ¼ X ikg can then be mapped onto a sequence of these state-space indices fikg. The model
is completed by a matrix fqij P 0g that gives the expected rates for the system to move from an arbitrary state
X i to X j. The possible outcomes are assumed independent, so that the rates sum to give
1 Th
Q ¼
X
X j2X

qij;
the rate for the overall process at the current time step. The rates qij may depend on time; when they do not,
the Markov process is stationary. Equivalently, transition probabilities can be defined from these rates by
pij ¼ qij=Q)
X
X j2X

pij ¼ 1:
Since transitions from X i to itself do no affect the dynamics one can take qii ¼ pii ¼ 0.
For KMC, the transition matrix fqijg is typically sparse, as most states are not accessible from a given state

X i. At any given time-step, we can therefore restrict our attention to a much smaller set of events where the
transition rate qij out of the current state is nonzero. Thus, while events can be identified by a pair of state-
space labels ði; jÞ, we will find it more useful to enumerate the set of currently accessible states fEn 2 XgN

n¼1 or,
equivalently, the corresponding set of possible changes to the current state fDX ngN

n¼1 using an event label.1 This
leads naturally to a corresponding rate list fqng

N
n¼1. Note that the rate list fqng will typically change even when

the transition matrix fqijg is stationary and/or the number of events N is constant.
In addition to sparse transition matrices, most KMC models are local in the sense that the change in state is

spatially localized. For example, if the state-space is the set of singly defined surfaces for a simple cubic lattice
H, the events in a local model typically correspond to changes in the height Hij confined to a region,
ji� i�j2 þ jj� j�j2 < K2, that lies within K lattice sites of a particular lattice point ði�; j�Þ. If the model does
not have this feature, the best one can hope for is an OðNÞ update cost, as every rate in the rate list must
be updated and the cost of updating the system state will typically be OðNÞ as well. The algorithms discussed
in Section 3 are of little use in the latter situation, as they are aimed at providing a fixed update cost for local
models.
e state-space is typically a vector space so that DX 2 X .



q

n

n

1 3 ...2 N

Fig. 1. Like other MC methods, KMC must repeatedly sample from discrete distributions/ensembles. For KMC, this distribution
corresponds to a list of rates fqng that typically changes from one time-step to the next and a corresponding set of events fDX ng that
represent local changes to the system state.

T.P. Schulze / Journal of Computational Physics 227 (2008) 2455–2462 2457
In order to build efficient algorithms, it is important that the event labels reflect the local nature of the
model in two ways: (1) a minimal subset of rates should require changing after any given event, and (2) this
subset should be identifiable from the event labels, i.e. the event labels should tell you where the ‘‘neighboring’’
events are. This implies explicit knowledge of the mapping between the event numbers and events n$ DX n. In
a simple case like the state-space H, we can permanently associate events with specific lattice coordinates
ði�; j�Þ, so that the mapping never changes and can be computed using formulas or stored. Note that the lattice
coordinates ði�; j�Þ refer to a single lattice site, where as the state-space coordinates ði; jÞ used above number
entire states. More complicated cases may require updating the mapping n$ DX n in some fashion. Below, we
shall assume the existence of such a map and refer to event labels using a single index n.

The essential tasks involved in generating the sequence of states fxkg are sampling from a discrete distribu-
tion fqng (see Fig. 1) and updating various data structures to reflect the chosen event. These tasks are repeated
at each time step. The second step involves updates to both structures needed for the sampling algorithm and
structures associated with the rate list fqng and system state xk. It is the latter task that distinguishes KMC
from other dynamic Monte Carlo simulations, where the distribution fqng need not be tied to a state space.
Dynamic Monte Carlo is itself distinct from stationary Monte Carlo simulations and Monte Carlo integra-
tion, where one repeatedly samples the same distribution and can therefore afford much higher overhead. Sta-
tionary Monte Carlo is much more studied [9], offering many techniques which can potentially be adapted to
the non-stationary case and to KMC.

We are interested in systems where the number of events N is very large, the number of time-steps is even
larger, and ensemble averaging is often desirable—thus, the need for fast algorithms. The first condition, in
particular, may not apply so broadly. In the chemical kinetics literature, for example, where the system is
assumed to be continuously stirred, events correspond to distinct chemical processes and the number of these
is usually less than 100. We shall address algorithms which are, in principle, exact, although they may corre-
spond to a model that is an approximation. In many applications, we have already mentioned that it is com-
mon to use some form of nearest-neighbor model where a limited number of rates K � N are affected by any
given transition. Many of the algorithms we discuss exploit this fact and it is assumed in our assessments of
computational costs. It is also possible to develop algorithms that rely on further approximations to the
underlying stochastic process [12–14], but we do not address this here.

There are two well-known basic strategies for KMC simulation which we shall refer to as rejection and
rejection free algorithms. The first method relies on repeatedly sampling from a uniform distribution and cor-
recting for this by rejecting an appropriate number of events. One can therefore directly implement any num-
ber of schemes for generating uniformly distributed random numbers and there is essentially no manipulation
of data involved. The weakness of this algorithm lies in the cost of generating extra random numbers, which
becomes intolerable for systems with highly disparate rates. Rejection-free algorithms, which are known var-
iously as the Bortz–Kalos–Lebowitz (BKL) [4], N-fold way,2 or Gillespie algorithm [10,11] in different com-
munities, take what can be viewed as the opposite strategy: they avoid rejection entirely by sampling uniformly
from the interval ½0;QÞ rather than ½0;NÞ, and determining which sub-interval ½qn; qnþ1Þ the random number
2 The N here refers to the number of distinct rates, which we call M below, and does not indicate a factor of improvement in performance
over the rejection algorithm.



2458 T.P. Schulze / Journal of Computational Physics 227 (2008) 2455–2462
falls into. Note that the analogous task for rejection based algorithms can be accomplished by simply round-
ing up to an integer, whereas the rejection-free techniques require some form of searching and/or sorting.
There is a surprising variety of approaches to the latter task. Next, we review some established approaches
and then, in Section 3, introduce two new algorithms.

2.1. Review of KMC algorithms

The basic KMC algorithm consists of two steps: event selection and updating of data structures. If one is
also generating the sequence of waiting times fdtkg, an independently generated random number u 2 ð0; 1� is
transformed to an appropriately distributed waiting time dtk ¼ �ð1=QÞ lnðuÞ. It is frequently sufficient, how-
ever, to accumulate time using expected waiting time 1=Q or to simply keep track of the number of iterations.

2.1.1. Rejection

We begin by reviewing the simplest rejection-based algorithm. To select an event, let q̂ be an upper bound,
preferably sharp, for the current set of rates fqng and perform the following steps:

Algorithm 1

(1) Choose a random number r 2 ½0;NÞ,
(2) Consider n ¼ IntðrÞ þ 1,
(3) Select event n if n� r < qn=q̂;
(4) Repeat until successful.

Assuming the model has the local property discussed above, the cost of this algorithm is proportional to the
ratio of attempted to accepted events. We call the inverse of this the efficiency E ¼ Q=bQ of the simulation, with
Q being the exact sum of rates and Q̂ ¼ Nq̂ the overestimate. The rejection method thus becomes extremely
inefficient when Q� Nq̂, a situation frequently encountered, for example, when rates are derived from a
Boltzmann-like distribution:
q / expð�DU=kBT Þ;

that depends sensitively on an energy barrier DU scaled by temperature. If one assumes that a typical rate �q
and the upper bound q̂ approach a limit with increasing system size, then the efficiency is independent of sys-
tem size and this algorithm has a fixed, but typically large, cost as N !1. Indeed there are many variations
on the rejection algorithm that scale well with increasing system size, but these statements are of little practical
value unless they can be combined with a statement addressing efficiency.

The inefficiency when there is one or more large rates qn is analogous to the problem that occurs in MC inte-
gration of a sharply peaked function. When integrating, one corrects for this by using some form of ‘‘impor-
tance’’ sampling: concentrating the sample points in the region of the peak. For example one could partition
the rates into two sets—one where the rates are large and another where they are small—and apply the rejection
method with two estimates q̂L and q̂S . As we shall see in Section 3, this generalizes to something analogous to
Lebesgue integration. The partitioning clearly requires more work and, unlike the integration example, in
KMC the distribution changes after each sample is taken so that at least some of this work must be repeated.
Strategies for doing this ultimately rely on techniques for rejection-free sampling, which are reviewed next.

2.1.2. Rejection-free

Rejection-free algorithms [4–11] are more common in KMC due to highly disparate rates. A basic version
of this algorithm requires these steps:

Algorithm 2

(1) Calculate the sum Q ¼
PN

n¼1qn, retaining the partial sums Qn.
(2) Choose a random number r 2 ½0;QÞ.



T.P. Schulze / Journal of Computational Physics 227 (2008) 2455–2462 2459
(3) Search the list of partial sums until Qn�1 6 r < Qn.
(4) Select event n.
Since Q in step 2 is the (numerically) exact sum of the rates, the efficiency of this algorithm E ¼ 1 and every
attempt is successful, but the number of operations involved in each attempt is proportional to the number of
events N, involving the generation of a random number and O(N) floating point operations.

The cost of each iteration can be reduced if the rates are sorted, from largest to smallest, to favor early ter-
mination of the search in step 3. Techniques that accomplish something along these lines are incorporated into
the algorithms discussed in Section 3. For local models, one can greatly improve upon the basic rejection-free
algorithm by using a partitioned search strategy. A simple version of this is to separate the rates into to M sets,
compute sums Q1;Q2; . . . ;QM , apply Algorithm 2 to these sets and apply it a second time to the elements of the
selected set [15]. This two-level procedure can be repeated, leading to a large number of possible tree-searching
algorithms, including options where branches have an unequal number of sub-levels.

The binary search, where one repeatedly subdivides events into two equal sets to the greatest extent possi-
ble, is popular. For a detailed description of how to implement this method, see Blue et al. [16]; we will restrict
our discussion here to an evaluation of the computational cost of the method. If we let bN be the smallest
power of 2 greater than N, this search can be implemented as an L-level binary search, where L ¼ log2

bN
by setting the extra rates, where n > N , to zero. In this method, one must make one floating point decision
per level and for each of the K rates that change, one must perform L sums from the bottom of the tree to
the root. Thus, the cost of this method is Oðlog NÞ; N !1:

A frequently occurring special case is when the number of distinct rates M � N is small. One often finds
M � K because both the number of distinct rates and the number of neighbors influenced by a transition
depend on the definition of ‘‘nearest’’ neighbor. This case is amenable to a ‘‘binning’’ algorithm, where a
set of M event lists ffemlgcm

l¼1g
M
m¼1 contain event labels corresponding to common rates rm and multiplicities

cm. Apparently overlooked, at least in the epitaxy literature, is that this is the approach adopted in the original
algorithm presented by Bortz et al. [4] and that this approach actually scales better than the binary search as
the system size becomes large. This is pointed out in Schulze [5], where the technique is rediscovered and a
direct comparison of the two methods is made. Briefly, this data structure allows the sum of rates
Q ¼

PM
m¼1cmrm to be computed more efficiently and a 2-level method requires no searching at the final level,

as the rates within that level are uniform. When K > 1, however, one must locate the neighbors within the
sub-lists in order to update them. Searching the lists is, at best, an OðN 1=2Þ operation and this is the reason
the method is sometimes viewed as being less efficient than the binary search [3]. However, this too can be done
efficiently by using an inverted-list data structure e�1

n to store the event list coordinates ðm; lÞ of event n. The
update cost is then independent of the number of events N, scaling instead with the number of distinct rates M,
as maintaining the binned event lists and inverted event list can be done without searching. This method can,
itself, be generalized to a multi-level technique if the number M is also large. The inverted list is the essential
tool needed to build the strategies presented in the next section. These algorithms will address the general case
of arbitrary rates that do not cluster at particular values.

3. Fixed cost algorithms for arbitrary rate profiles

As emphasized above, it is not sufficient to simply indicate a scaling with increasing system size, N !1, as
it is easy to invent methods that scale well, but necessarily involve a large number of operations, rendering the
methods less than optimal for the size of problem one actually wishes to simulate. For example, we have seen
that the simplest rejection method of sampling from a uniform bounding distribution is O(1), but performs
poorly due to disparate rates. We now discuss two general-purpose strategies that have a small, fixed cost with
increasing system size.

3.1. Inverted-list rejection algorithm

There are many ways to combine rejection with one or more levels of a tree search. The first method we
discuss generalizes the two-level inverted-list algorithm [4,5] to the case where the number of distinct rates



rm

21                                                M...

r

m

m

21                                                M...
m

^

Fig. 2. Illustration of the reorganization of the rate list fqng into (a) ordered sets of distinct rates frmg when this is possible and (b) ordered
sets of rate categories Rm ¼ frĵrm�1 6 r < r̂mg when it is not.

2460 T.P. Schulze / Journal of Computational Physics 227 (2008) 2455–2462
is arbitrary. In the special case of this algorithm discussed above, it is useful to reorganize the rates fqng into
an ordered set of distinct rates fr1 > r2 > � � � > rm > � � � > rMg with multiplicities fcmg. Similarly, as illustrated
in Fig. 2, we will now take M � N to be a smaller number of rate categories Rm ¼ frĵrm�1 6 r < r̂mg, repre-
senting cm rates, and implement rejection on the lower level of the search by using the upper bounds fr̂mg.

The algorithm requires these steps:

Algorithm 3

(1) Compute the partial sums bRm ¼
Pm

i¼1r̂ici.

(2) Generate a random number r 2 ½0; bRMÞ.
(3) Search the list of partial sums until bRm�1 6 r < bRm.
(4) Select event eml from this sub-list by computing
l ¼ Int
ðR̂m � rÞ

r̂m

� �
þ 1:
(5) Reject (go to 2) if
Frac
ðR̂m � rÞ

r̂m

� �
P

qml

r̂m
:

(6) For events that have their rates changed from category bRmi to bRmf :

(a) Move them to the end of sublist mf ; add one to cmf ; update fe�1

n g.
(b) Move the event listed as emicmi

into the vacated position in sublist mi; reduce cmi by one; update
fe�1

n g.
For a given set of rates, the expected number of attempts per accepted event is again the reciprocal of the
efficiency:
E ¼ QbRM

¼ Q

Qþ
PM

m¼1

Pcm
l¼1ðr̂m � qmlÞ

;

which depends in a complicated way on the partitioning of the rates. The sums in the denominator of this
expression are reminiscent of the error formulas for a numerical quadrature, with the important difference that
the approximation to the true set of rates must be an upper bound.

Assuming these estimates, the computational cost can be minimized by finding the number of categories M

and placement of category boundaries fr̂mg that minimize
min
M

M min
fr̂mg

Qþ
PM

m¼1

Pcm
l¼1ðr̂m � qmlÞ

Q

" #
:

The inner minimization problem will minimize the number of random numbers used per accepted move for a
given number of categories M. As explained earlier, the cost of a linear search through the categories, which



T.P. Schulze / Journal of Computational Physics 227 (2008) 2455–2462 2461
must be done for both accepted and rejected moves, scales with M, so that the total cost of the algorithm is
increased by this factor and this must also be considered in the overall optimization of the algorithm. It is
anticipated that the optimal M will not be large; if it were large, one could use a binary search on the cate-
gories and the factor of M would then become log M .

The performance of this algorithm can be analyzed further for special cases, but in practice is model-depen-
dent, requiring choices that work well for typical rate profiles fqng, as these change from one event to the next.
For a fixed set of choices for M and fr̂mg, the inverted-list method will always outperform a binary search in
the limit N !1, but this will not be the case at low values of N, as the inverted-list method has somewhat
higher overhead. The exact size of N for which this cross-over occurs and the factor of improvement for larger
N will depend on how efficiently the partitioning is done. Indeed, it also depends on how efficiently all aspects
of the algorithm are implemented. An improvement that reduces an operation performed by both algo-
rithms—a faster random number generator, for example—will enhance the factor of improvement of the faster
method. In an application where N is large and the partitioning is difficult to optimize, one may find the
method discussed below to be preferable.

3.2. Digit sorting algorithm

In the above strategy, an interval ½0; bQÞ, is partitioned into subintervals corresponding to events with
approximately equal rates. The partitions are then repartitioned into equal intervals, one for each event. It
is the equal sized partitions at the lower level that allow for search-free event selection. In this section, we
adapt the Marsaglia–Norman–Cannon [6,7] digit-sorting strategy for sampling a stationary distribution so
that it may be applied to KMC. The key once again is to rely on the inverted list technique, so that one
can avoid repeating the considerable overhead that is required to initialize this algorithm.

The idea here is to partition the interval ½0;QÞ into subintervals that correspond to bits in the binary rep-
resentation of the rates qn. Each of the subintervals is again repartitioned into equal intervals, one for each
event with a nonzero bit corresponding to that interval, but an event may now be represented in more than
one of the original partitions. Combining this with an inverted list for each bit will result in a rejection-free
method with a fixed cost as the number of events increases. A modified version of this algorithm can be made
to work with decimal (or any other base) integers.

Let qn;b 2 f0; 1g be the bth bit in the B-bit binary representation of the transition rate qn represented to a
fixed binary accuracy with respect to a floating binary point and let cb ¼

P
nqn;b be the number of rates with

non-zero bth bits. We now maintain B event lists el;b, one for each bit, that compactly store event labels n of
the cb events with non-zero bth bits and B inverted event lists e�1

n;b that indicates where, and if, event n is rep-
resented in event sublist b.

The algorithm requires these steps:

Algorithm 4

(1) Compute/update the partial sums Sb ¼
Pb

i¼1ci � 2B�i.
(2) Generate a random number r 2 ½0; SBÞ.
(3) Search the list of partial sums until Sb�1 6 r < Sb.
(4) Select event el;b from list b by computing
l ¼ Int
r � Sb�1

2B�b

� �
þ 1:
(5) For events that have one or more bits qn;b of their rates change, do one of the following:

(a) Add to the end of list b; add one to cb; update e�1

n;b, or
(b) Remove event el;b from list b; move the event listed as ecb;b into the vacated position; reduce cb by

one; update both elements of e�1
n;b.
This algorithm has substantially larger memory requirements than Algorithm 3, as one must maintain an
inverted event list corresponding to each bit instead of a single inverted list. Similarly, the fixed update cost



2462 T.P. Schulze / Journal of Computational Physics 227 (2008) 2455–2462
includes an inner loop over the number of bits B in the representation of the rates. These disadvantages are
offset by lack of rejection and could potentially be further mitigated by exploiting the binary representation of
rates to perform arithmetic and store events more efficiently.
4. Conclusion

In summary, this paper discusses two algorithms for KMC simulations designed to give a small, fixed sin-
gle-event execution time as the system size is increased. These algorithms address systems with large event lists
and disparate rates that do not cluster at a small set of discrete values. The algorithms will be applicable to
many systems that are modeled using inhomogeneous random walks with rates that depend on the local
environment.

Acknowledgement

The author would like to acknowledge support from the National Science Foundation through Grant num-
ber DMS-0707443.

References

[1] F.F. Abraham, G.W. White, Computer simulation of vapor deposition on two-dimensional lattices, J. Appl. Phys. 41 (1970) 1841–
1849.

[2] G.H. Gilmer, P. Bennema, Simulation of crystal growth with surface diffusion, J. Appl. Phys. 43 (1972) 1347–1360.
[3] M. Kotrla, Numerical simulations in the theory of crystal growth, Comput. Phys. Commun. 97 (1996) 82–100.
[4] A.B. Bortz, M.H. Kalos, J.L. Lebowitz, New algorithm for Monte-Carlo simulations of Ising spin systems, J. Comput. Phys. 17

(1975) 10–18.
[5] T.P. Schulze, Kinetic Monte-Carlo with minimal searching, Phys. Rev. E 65 (2002). Art. No. 036704.
[6] G. Marsaglia, Generating discrete random variables in a computer, Commun. ACM 6 (1963) 37–38.
[7] J.E. Norman, L.E. Cannon, A computer program for the generation of random variables from any discrete distribution, J. Stat.

Comput. Simul. 1 (1972) 331–348.
[8] T.P. Schulze, A hybrid scheme for simulating epitaxial growth, J. Cryst. Growth 263 (2004) 505–615.
[9] J.E. Gentle, Random Number Generation and Monte Carlo Methods, Springer (2003).

[10] D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem. 81 (1977) 2340–2361.
[11] D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput.

Phys. 22 (1976) 403–434.
[12] M. Rathinam, L.R. Petzold, Y. Cao, Daniel T. Gillespie, Stiffness in stochastic chemically reacting systems: the implicit tau-leaping

method, J. Chem. Phys. 119 (2003) 12784–12794.
[13] E. Weinan, D. Liu, E. Vanden-Eijnden, Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates, J.

Chem. Phys. 123 (2005) 194107.
[14] J. Devita, P. Smereka, L. Sander, Multiscale kinetic Monte Carlo for simulating epitaxial growth, Phys. Rev. B 72 (2005). Article No.

205421.
[15] P.A. Maksym, Fast Monte-Carlo simulation of MBE growth, Semiconductor Sci. Tech. 3 (1988) 594–596.
[16] J.L. Blue, I. Beichl, F. Sullivan, Faster Monte-Carlo simulations, Phys. Rev. E 51 (1995) 867–868.


	Efficient kinetic Monte Carlo simulation
	Introduction
	KMC algorithms
	Review of KMC algorithms
	Rejection
	Rejection-free


	Fixed cost algorithms for arbitrary rate profiles
	Inverted-list rejection algorithm
	Digit sorting algorithm

	Conclusion
	Acknowledgement
	References


